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Double Kelvin waves with continuous depth profiles 

By M. S .  LONGUET-HIGGINS 
Oregon State University, Corvallis, Oregon 

(Received 1 January 1968) 

The possibility of long waves in a rotating ocean being trapped along a straight 
discontinuity in depth was demonstrated in a recent paper (Longuet-Higgins 
1968). The analysis is now extended to the situation where the depth varies 
continuously, in a zone separating two regions of different depths. The trapping 
of waves in the transition zone is investigated, taking full account of the horizon- 
tal divergence of the motion. 

If the profile of the depth is assumed to be monotonic, then it is shown that the 
trapped waves always travel along the transition zone with the shallower water 
to their right in the northern hemisphere and to their left in the southern 
hemisphere. The wave period must always exceed a pendulum-day. The period 
is also bounded below by a quantity depending inversely on the maximum 
bottom gradient. 

By allowing the width W of the transition zone to vary, asymptotic forms for 
the trapped modes are obtained, both as W + 0 and as W + co. In  the limit as 
W + 0 the depth becomes discontinuous, and it is shown that the lowest mode 
then becomes a double Kelvin wave (Longuet-Higgins 1968) propagated along 
the discontinuity. The periods of the higher modes, on the other hand, all tend 
to infinity; these modes become steady currents. 

Numerical calculations of the trapped modes are presented for two different 
laws of depth in the transition zone. It is found that as W -+ 0 the lowest mode is 
insensitive to the form of the depth profile. Higher modes depend on the details 
of the profile. Hence the lowest mode is the most likely to be observed in the real 
ocean. 

The dispersion relation is also investigated. It is shown that the group-velocity 
of all modes must change sign at  some point in the range of wave-numbers, if 
the divergence is taken into account. When the divergence was neglected the 
lowest mode appeared to be exceptional, in that the group-velocity was always 
in the same direction. This anomaly is now removed. 

1. Introduction 
It was shown in a recent papert that a discontinuity in depth in a rotating 

shallow sea is capable of supporting a novel kind of wave motion. The wave 
energy is propagated along the discontinuity, and falls off exponentially to 
either side. Such trapped waves have been called ‘double Kelvin waves’ or 

t Longuet-Higgins (1968). This paper will subsequently be referred to as reference I. 
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‘seascarp waves’ (I). It was found that for any given wavelength, just one such 
wave motion is possible, and its period always exceeds one pendulum-day. 

A discontinuity in the ocean depth is, however, a special and possibly un- 
common situation. It is natural to inquire whether trapped waves exist when the 
bottom profile has other forms, for example, when there is a continuous transition 
from one depth to another. One may further ask whether such trapped waves 
will tend to double Kelvin waves as the width of the transition zone is reduced to 
zero. 

An investigation of certain special cases has already been made both by 
Rhines (1967) and by Buchwald & Adams (1968). These authors, however, 
assumed that the divergence of the wave motion (associated with a vertical 
displacement of the free surface) was negligible. This assumption significantly 
affects the conclusions, as will be seen below. Rhines also made other approxima- 
tions of a less significant nature (see footnote t on p. 53). 

If the divergence is assumed to be negligible then it is not hard to see intuitively 
that waves will tend to be propagated along the sloping transition zone with the 
shallower water to their right, just as on a sloping plane bottom, or on a P-plane 
(see Longuet-Higgins 1965; $3;  Phillips 1965). Those vertical filaments of fluid 
displaced up the slope are shortened and so have a negative relative velocity, 
and those displaced down the slope have a positive relative vorticity. The com- 
bination of alternate positive and negative vorticities results in a phase velocity 
to the west on a /3-plane, or with shallow water to the right on a sloping bottom 
in the northern hemisphere. Outside the transition zone the above mechanism 
ceases to act, and one might therefore expect some types of wave in which the 
energy was mainly limited to the transition zone. 

However, when the divergence is taken into account some stretching of the 
vertical filaments of water is caused also by the vertical displacement of the free 
surface, as well as by the bottom slope. At first sight it is not clear which of these 
effects will predominate. 

In the present paper we take the divergence of the wave motion fully into 
account, and investigate the possibility of trapped wave motions being associated 
with continuous depth profiles of a rather general kind. The depth his assumed to 
be a function only of the co-ordinate x normal to the escarpment. Moreover, h 
is assumed to be monotonic in x and to tend to uniform values at large distances 
from the escarpment on either side (see figure 1). The possibility of trapped waves 
in such a configuration is investigated on the basis of the linearized theory of 
waves in shallow water. 

In  5 3 it is shown, first, that the waves can be propagated in one direction only, 
namely with the shallower water to the right of the direction of propagation. For 
sufficiently large wave periods, some trapped waves are always possible. Next, 
in $4 it is proved that the period T must always exceed one pendulum-day. It is 
proved further that r is bounded below by various bounds inversely proportional 
to the maximum slope of the bottom-the gentler the maximum bottom slope, 
the longer the wave period. 

Next the asymptotic forms of the waves are found for very gentle slopes and 
very steep slopes, respectively. For very gentle slopes it is shown that with a 
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symmetrical profile the energy tends to be located towards the upper part of the 
slope. There is a marked difference in asymptotic behaviour according as the 
bottom slope is smooth or discontinuous (as with a uniform slope connecting two 
different levels). On the other hand, for steep slopes it is found that there is one 
mode-the lowest, which tends to the double Kelvin wave as the width of the 
transition zone is diminished; and an infinity of higher modes whose periods each 
tend to infinity; these reduce to steady currents. 

FIGURE 1. Trapped waves being propagated along the transition zone between two regions 
of uniform depth. The depth profile has the form given by equation (1.1). 

In $39 and 10 the asymptotic formulae are applied to the depth profile 

h(x) = Z( 1 + P tanh (zf w))  (1.1) 
which represents a smooth transition from a depth E(1 - P )  to a depth Z( 1 +P) ;  
and secondly to the profile 

(1.2) i i E(1 + P )  ( W < s < 0 0 )  

- P )  (-00 < x < - W ) ,  
h(x) = E(l-t-/%/W) ( -  W < x < W ) ,  

which represents a zone of uniform gradient joining two regions of different but 
uniform depth. Numerical calculations of the wave period T and some profiles 
of the trapped waves are presented for the whole range of widths of the transition 
zone. 

In  $11, we discuss the dispersion relation-connecting the frequency c of the 
waves with the wave-number m parallel to the escarpment. It is shown that 
v+O both when m+O and when m+m, €or all modes including the lowest, 
provided the divergence of the waves is taken into account. Hence the group 
velocity is always in the same direction as the phase velocity at  small wave- 
numbers, and in the opposite direction a t  large wave-numbers. Some computa- 
tions of the dispersion relation for the profile (1.1) are shown in figures 11 and 12. 

4-2 
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The behaviour of the lowest mode, in which the frequency tends to zero as 
m+ 0 is in contrast to that found by Buchwald & Adams (1968) in the case when 
the depth profile h(x) in the transition zone is exponential. They found that as 
m + 0 the frequency tended to a non-zero value. We show in 0 11 that this differ- 
ence is due to their neglect of the horizontal divergence of the wave motion. 

2. General equations 

tion of continuity for long waves in a rotating plane: 
We take as our starting point the linearized equations of motion and the equa- 

--fv= au -9- a< 
at ax’ 

av a< -+fu = -9- 
at ay ’ 

a a a< 
ax aY 
-(hu)+- (hv) = --, at (2.3) 

where x and y are horizontal rectangular co-ordinates, t denotes the time, u and 
v the velocity components in the x- and y-directions, <the surface elevation, and 
f, g and h the Coriolis parameter, the acceleration of gravity and the equilibrium 
depth respectively. h is in general a function of x and y. 

Suppose now that h is independent of y, and let us seek solutions in the form of 
waves travelling in the y-direction (see figure 1). Thus let 

u, v,< ei(mg-4 (2.4) 

where a denotes the radian frequency and m is the wave-number in the y- 
direction. Without loss of generality we may take m > 0. On replacing a/at by 
(-;a) and ajay by ( im) in equations (2.1) and (2.2), and solving we obtain a pair 
of simultaneous equations for u and v whose solution is 

Substitution in (2.3) now gives the following equation for 5 

We shall assume that the bottom slope is monotonic, that is to say 

dhldx B 0. (2.7) 

(see figure 1). Also that as x+ -co so h-th, > 0; and that as x - f  +co so h+ 
h, < co. We then seek solutions to equation (2.6) in the form of ‘trapped’ 
modes-that is, solutions in which <+ 0 as x + +_ co. 
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It may be recalled (I) that when g2 < f the parameter E defined by 

E = f 2/m2gh2 (2.8) 

is a measure of the divergence of the wave motion in deep water. In  the non- 
divergent approximation used by Rhines (1967) and Buchwald & Adams (1968) 
it  is assumed that E < 1, so that the first term on the right of (2.6) may be omitted. 
Here we shall not make this assumpti0n.t 

3. The form of the solutions 
It is convenient to choose units of length and time in which 

m = l ,  f = 1  (3.1) 

and to write 7 = -f/a = - l /v (3.2) 

for the period in pendulum-days. We shall see shortly that 7 is always positive. 
Equation (2.6) then assumes the form 

We look for eigensolutions of (3.3), that is for values of 7 for which there is a 
solution (3.3) tending to 0 as x-+ k 00. We shall see that there is an infinite dis- 
crete sequence T ~ ,  r,,. . . of such eigenvalues.1 

The asymptotic behaviour of 6 as x-+ k co is simple; for since h tends mono- 
tonically to a constant, dhldx must tend to 0. Thus at x = -00, for example, 
(3.3) becomes 

The coefficient of 6 is a constant. Since <-+ 0 as x -+ - co we must have 

6 N constant x exp (l,x) (3.5) 

where (3.6) 

Similarly as x + + co the solution is given asymptotically by 

5 N constant x exp (12x), (3.7) 

where 
7 2 -  1 

1; = -+l ( 1 2  < 0). 
gh2 

t I n  the corresponding equation for the stream function in non-divergent motion, 
Rhines also replaced the factor h on the left-hand side by a constant z. Here we take the 
variation of h fully into account, as well as the divergence. 

1 The eigenvalue problem is not of the standard Stm-Lionville form since T occurs 
in a non-linear manner. It may perhaps be put into the form studied by Shinbrot (1963) but 
it is not clear that all of Shinbrot’s conditions are satisfied. 
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Moreover, both 1, and 1, are real; hence 

and similarly for h,. 
In  general the behaviour of cis exponential or sinusoidal in character according 

as the coefficient of cin equation (3.3) is positive or negative, that  is according to  
the sign of 7 2 -  1 d h  

Q = -  + h - T -  
9r2 dx‘ (3.10) 

If Q is positive throughout the whole range of x we see from (3.3) that 5 and 
(hd</dx) must have the same sign not only when x+ - 00 but throughout the 

I 
I 

I 
I 

FIGURE 2 .  Sketch of the functions F ,  73’’ and Q defined by (3.14) and (3.15) when the depth 
profile is given by (1.1). Below is sketched one of the trapped modes ( m  = 3). 

whole range of x. Hence must tend to rt 00 as x+m, and the solution cannot 
represent a trapped wave. So for a trapped wave to exist, Q must change sign 

~ 

somewhere in ( - 00, a), that is 
dh r2-1 
ax gr2 

r - > -  +h 

for a t  least some x in ( - 00, 00). Since h 2 h, this implies 

dh 
r -  >- +h, > 0 ax 972 

(3.11) 

(3.12) 

by (3.9). But m? and dh/dx are both positive, by hypothesis; therefore we have 

7 > 0. (3.13) 
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It follows that in the northern hemisphere, where f > 0, the trapped waves can 
be propagated only in the negative y-direction, that is to say with the shallower 
water to the right. In the southern hemisphere the shallower water is to the left 
of the direction of propagation. 

Let us consider the function Q of equation (3.10). Q may be expressed as the 
difference of two terms: 

Q = F-rF' (3.14) 

where (3.15) 

and a prime denotes dldx. The graph of F is the reflexion of the depth profile in 
the line parallel to the x-axis at a distance %C (see figure 2). We have seen that F 
is always positive, The derivative F' is also positive or zero, by hypothesis, so 
that rF' is a non-negative function of x.  

Now for trapped waves to exist, the difference Q must be negative over some 
rmge of x (corresponding to the shaded area in figure 2). Within this 'potential 
well' the wave profile 6 is sinusoidal; outside, it is exponential. It can be seen 
from figure 2 that if the profile of the bottom is anti-symmetrical about x = 0, 
then the limits of the 'potential well' will be displaced somewhat to the left. 
So we expect the wave energy to be displaced towards the upper part of the slope. 

Since increasing r tends to increase both F and rF', the effect on Q at moderate 
values of r is not clear. However, as r -+ 00, so F -+ h + l/g, and so Q may be made 
as negative as we please wherever P' > 0. Hence we see that an infinite sequence 
of eigenvalues r must exist, tending to infinity. We shall now establish some 
lower bounds for r .  

4. Bounds for the wave period 
Using a prime t o  denote differentiation with respect to x, we may write (3.3) 

concisely as 
(hc')' = (rax P2 + h - rh') g. 

Let us multiply both sides of this equation by g' and integrate over - co < x < 00 : 

(the limits of integration being understood). Because of the exponential be- 
haviour of g at & 00 the resulting integrals converge easily. The left-hand side, 
on integrating by parts, can be transformed as follows: 

Similarly, the right-hand side becomes 
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On equating the two sides one obtains, for r ,  the relation 

T s s  h c 2 d x  = h’(c2+(;’2)dx. (4.5) 

The integrand on the right is non-negative, and since we have seen that 7 > 0 
it follows that 

JhY2d2:  > 0. (4.6) 

Let us now subtract from each side of (4.5) the corresponding side of the equation 

h;c2dx = - h’2Cc’dx. s s (4.7) 

(7 - 1) h”c2dx = h’(c+ <’)2dX .  (4.8) s s  We obtain 

Since the integrand on the right is non-negative it follows (except in the trivial 
case h’ = 0 )  that the right-hand side is positive. But the integral on the left is 
also positive, by (4.6). We have therefore 

(7- 1)  > 0 (7> 1) .  (4.9) 

In other words, the wave period necessarily exceeds one pendulum-day. 
Now let us return to equation (4.1), multiply this time by 6 and integrate 

again over ( - co, 00). After integrating the left-hand side by parts we obtain now 

(4.10) 

Since the left-hand side is negative, the integrand on the right must be negative 
over some range of x. Hence 

(4.11) 

In  other words the period is bounded below not only by 1 but by a quantity 
inversely proportional to the maximum bottom slope. More strictly, (4.1 1) re- 
lates r to the maximum proportional rate of change of depth. 

In (4.10) let us take over to theleft-hand side those terms involving 7 explicitly : 

(4.12) 

Now adding to each side of this equation the corresponding side of the identity 

(4.13) 

we obtain (4.14) 

As before, the right-hand side is positive. Since also (7 - 1) > 0 by (4.9) it follows 
that 

(4.15) 
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Therefore the integrand must be positive over at  least some range of x. Conse- 
quently 

(4.16) 

that is r2(gh')max - r - 1 > 0. (4.17) 

The product of the two roots of the quadratic expression on the left of (4.17) is 
equal to - l/(ghf)max. Since this is negative, it follows that if the roots are real, 
one root is positive and the other negative. But r is certainly positive. Hence 
r must exceed the positive root, that is 

Since the square root is certainly greater than 1 we have a fortiori 

1 
r > -  

fgh'),,x * 

This inequality is stronger than (4.11) whenever 

gh, < 1. 

(4.18) 

(4.19) 

(4.20) 

5. Effects of small variations in depth or wavelength 
From the analysis of $ 4  we may further deduce how the wave period varies 

when small changes are made to the depth h(x). Equation (4.12) (unlike (4.5)) 
yields a variational principle, that is to say for a given law of depth h(x), the value 
of T is stationary with respect to small departures A<(%) of the surface eIevation 
from a solution 5 to the differential equation (4.1). This is easily verified by 
substituting (<+A<) in place of 5 in equation (4.12) and integrating by parts. 
Hence when h undergoes a small variation Ah, any change Ar in the wave period 
arises, to first order, solely from the change in h. In  fact we have from (4.12), 

Ar/(h'-;) c2dx  =jAh(<2+<f2)dx-r  s Ah'<2dx 

= /Ah(<+ 6')2dx- (r  - 1) s Ah'<2dx 

= jAh(<2+c2+2r<C)dx. (5.3) 

(5.2) 

(The equivalence of (5.1), (5.2) and (5.3) follows after integration by parts.) Prom 

combined with (4.14) we see that 
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This shows that the coeficient of Ar in (5.1) is strictly positive. Hence the sign 
of AT is the same as that of the right-hand sides of (5.1), ( 5 . 2 )  or (5 .3 ) .  

Suppose, for example, that the depth h is increased by a constant quantity, 
SO 

Ah = constant, Ah‘ = 0. (5.6) 

Then (5.1) shows that AT is necessarily positive. This is in accordance with the 
view that when we increase the depth we relax a constraint (namely the rigidity 
of the layer of fluid between depths h and h + Ah); hence the period r is increased. 

An integral formula for the group-velocity may be found similarly. For if the 
wave-number m is inserted in (4.12) we have via (2.6) 

Differentiating with respect to m we get 

*/(mh‘-$)  c2dx = 2m hc2dx-r h’c2dx. 
dm s s  

The integral on the left has been shown to be positive. Therefore, the group- 
velocity, given by da 1 d r  

dm r2dm (5.9) c =-=-- 

is positive or negative according as 

(5.10) 

6. Dependence on horizontal scale 
It was shown in paper I that when the depth profile has a sudden discontinuity 

separating two regions of uniform depth, a trapped wave may exist near the 
discontinuity. This situation may be regarded as the limiting case of a smooth 
depth profile when the horizontal scale of the profile is made to shrink continu- 
ously to zero. (The scale in the y-direction is meanwhile kept constant.) 

We shall now consider the effect of the horizontal scale in a general way by 
assuming that the depth h is a function of XI W ,  where W is a parameter propor- 
tional to the width of the transition zone. Thus as W-tm the transition zone 
stretches out to infinity, and the maximum slope tends to zero. As W+O the 
transition zone becomes narrow and within this zone the bottom slope becomes 
very steep. 

Let us write then 
h = h(5) where 6 = x/W (6.1) 

and W denotes a positive parameter. In  terms of 6 ,  the differential equation to 
be satisfied by the surface elevation is now 

7 2 -  1 
W-2(hc’)’ = ( 972 + h - W-lrh’) 6, 
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where a prime denotes differentiation with respect to 5. We propose to investi- 
gate the behaviour of the eigenvalues 7 of this equation, and of the correspond- 
ing eigenfunctions c(<), as W varies over the whole range (0, co). 

We shall begin by determining the asymptotic behaviour of 5 and r near the 
two extremes of the range of W ,  namely as W -+ co and W 2 0 respectively. 

7. Gentle slopes: asymptotic forms of g as W-tco 
Equation (6.2) may conveniently be written in the form 

(h5‘)’ = W2(P - AF’)C, (7.1) 

where h = r /W (7.2) 

and (7.3) 

(Here F denotes the same function as in (3.15), but now F‘ = dF/dE = WdF/dx.) 
Since the maximum bottom slope is proportional to W-l it follows from the 

inequality (4.11) that as W+co so 

7 2 O(W) and h 2 O(1). (7.4) 

(7.5) 
1 

g 
So from (5.5) P = h+-+O(W-’). 

In  other words, F is independent of W ,  to second order in W-l. 
To fix the ideas, let us assume first that the depth profile is smooth, as in 

figure 2. Since is a non-negative function o f t ,  it follows that when h is suffi- 
ciently small (but still O(1) in W )  then on the right of equation (7.1) (F-AF’) 
is positive for all and no trapped wave is possible. As 6oon as A is increased 
sufficiently to make (F  - hP’) negative at some point, a solution becomes possible. 
Write 

and let to and A, denote the values of 8 and h for which G just vanishes. At this. 
point, if h” exists, we must have 

F-AF‘ = G(t,A) (7.6) 

Go = 0, Gh = 0, (7.7) 

then the first two terms of the Taylor series 

are zero, and since aG,/ah = -F‘ + O( W-’) we have in the neighbourhood of 

(hc‘)’ = W2[&(t-E0)’Ga,”- (A-h,)(Fh+O(W-’))+...]. (7.9) (60, A,) 

Now writing 6-6, = x/w& 
and A-A,  = L / W  (7.10) 

and retaining only the terms of lowest order in W we obtain 

Wh,(d2c/dX2) = W2[&Ga,”X2/ W - L F J  W]c,  (7.11) 

that is (d2[ /dX2)  = [(G;/2ho)Xz - (LFh/h,)]<. (7.12) 
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This is a form of the harmonic oscillator equation 

d2C/dr2 = (r2 -PI5 

(also known as Weber’s equation) in which 

(7.13) 

(7.14) 

The only solutions that are finite as + k 00 are given by 

5 = e-QqzHH,(r) (p = 2v+ l), (7.15) 

where B,, denotes the Hermite polynomial of degree v. From (7.14) and (7.15) 
it follows that 

L = (2v+1) pfJ4 ~ (v = 0 , 1 , 2 ,  ...). (7.16) 

From (7.10) we have h = h o + L / W ,  (7.17) 

where A, is given by (7.7)’ that is to say by 

(7.18) 

So we have to solve for 6 the equation 

FoF{ - FA2 = 0, (7.19) 

or (log F,)” = 0. (7.20) 

Then A, is given by ho = Fo/F; = FA/F,“. (7.21) 

Also 

Combining these results with (7.16) and (7.17) we have 

(7.22) 

(7.23) 

To the degree of approximation implied in (7.23), it is sufficient in solving (7.20) 

F h +  (W (7.24) 
to take 

Thus we have obtained in general a discrete set of asymptotic solutions repre- 
senting trapped waves. The eigenfunctions, given by (7.13), are in the form of 
Weber functions. The corresponding periods are given by (7.23). The wave pro- 
file has 0 , 1 , 2 . .  . zeros in - 00 < [ < 00, corresponding to the value of v. Because 
of the exponential factor in (7.13) the energy is limited to the neighbourhood 
of the point 6 = to, surrounded by the small ‘potential well’. 

In  5 9 the above formulae will be applied to the smooth depth profile given by 
equation (1.1). 

When, contrary to our hypothesis, h” does not exist at  the point to, then neither 
do F;I or G;. A slightly different asymptotic behaviour then occurs. One example 

(by (7.5)). 
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of such a situation is the uniform-slope profile (1.2) (see figure 3). A sketch of the 
function Q is shown in figure 4. In  such a situation the ‘potential well’ has a 
characteristic saw-toothed shape, with a discontinuity at  the left-hand end 
(6 = Eo).  Within the potential well G has approximately the form 

G = G o + ( 5 - 6 o o ) G ~ + + ( h - h o ) ~ ’  aGO+ (7.25) 

- 
2w 

FIGURE 3. The forin of the depth profile is given by equation (1.2). 

FIGURE 4. The form of the functions F ,  73’’ and Q for the depth profile (1.2). The fourth 
mode (n = 3) is sketched below. 
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where now Go vanishes and G;+ represents the derivative of G to the right of 
5 = to. Hence (7.1) becomes 

(hc)' = W 2 [ ( ~ - ~ o ) G ; + - ( h - h , ) ( F ; + + O ( W - 2 ) )  + ..-I5 (7.26) 

in contrast to equation (7.9). Now writing 

h-ho = = L/WQ x'w'7) (7.27) 

and retaining only the terms of lowest order, we obtain in place of (7.12) the 

(7.28) 

The solution of this equation which vanishes as x -+ + co is given by 

f; = 4 7 1 ,  (7.29) 

where 7 = (G;+ /~O)w - LF6/G;+) (7.30) 

and Ai(q) denotes the Airy function.? As boundary condition at  the left-hand 
end of the interval ( X  = 0) we note that f; and df;/d< must both be continuous at 
X = 0. But to the left of the discontinuity G(8) is of order 1 and so 

Hence (7.31) 

The same condition must hold to the right of the discontinuity. Hence 

df;/dq = O( W-Q)df;/dc = O( W-*)f;. (7.32) 

For large values of W this implies that the correct boundary condition, to lowest 
order in W-l, is that 6 vanish when X = 0, that is 

Thus if the zeros of Ai(q)  are denoted by y,, where v = 0, 1,2,3,  

By (7.2) and (7.27) we have 

7 = hW = A, w+ LW+. 

Since A0 = FO/Fh+ 

and 

we have 

(7.33) 

we have 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

These formulae will be applied t o  the case of uniform slope in Q 10. 

t For tables of the Airy function and its zeros see Miller (1946) or Antosiewicz (1964). 
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8. Steep slopes; asymptotic forms as W+O 

transition zone tends to zero. 
We now turn to the opposite end of the range of W ,  when the width W of the 

Let the differential equation (6.2) be written in the form 

(hc’)’ = ( W2F - Xl”)C,  (8.1) 

where now h = Wr (8.2) 

and P = h + (I/g) (1 - W2/X2). (8.3) 

- 

We first seek solutions to (8.1) such that X 
As W+ 0 the first term W2F on the right-hand side of (8.1) will become small 

compared to the second term xF‘ whenever P‘ > 0. But since F‘+O when 
6- t  k co there will, for any W ,  always be points el and c,, say, where the two terms 

W2P - XF’ = 0. 
are in balance, i.e. where 

These may be called the turning points of the equation. If F’ is strictly positive 
everywhere, as in the profile (1.1) then El and 6, tend to & co respectively as 
W-t  0. Near or beyond the turning points, while 5 is O( 1)) 5‘ will tend to zero as 
W --f 0. Hence the asymptotic form of 6 will be that solution of the equation 

O( 1) as W -+ 0. 

(8.4) 

(hg’)’ + XF’C = 0,  (8.5) 

which satisfies the boundary conditions 

[ ’+O as t + ? o o .  (8.6) 

An example of this will be given in § 9. 
If on the other hand F‘ vanishes identically outside a certain finite range (with 

the profile (1.2)) this range is ( -  1,1)),  then el and c2 will tend respectively to the 
end-points of the range. The appropriate boundary conditions will be that 

r=O as E-tc, or t,. 18.7) 

An example will be given in 
It should be emphasized that C(c) will not necessarily tend to its asymptotic 

forms uniformly over the whole range of 6. Such non-uniformity of convergence 
is a well-known characteristic of differential equations possessing turning points 
(see, for example, Olver 1965). 

Both situations (8.6) and (8.7) lead generally to a well-posed eigenvalue prob- 
lem having solutions C,(t) and eigenvalues A,, where 

10. 

0 < x, < X, < x, < .... 

Provided X7‘ > 0 it  follows from (8.2) that as W -+ 0 
- 

7, N h,/W (n = 1 , 2 , 3 ,  ...). (8.9) 

Thus the periods of these motions become infinite as the width W of the transition 
zone tends to zero. These motions reduce to steady currents. 
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However, one of the solutions of the limiting equation (8.5) is given by 
A = A, = 0 and 5 = c0 = constant. This solution contravenes our assumption that 
h 2 O( 1). But we already know from reference I that in the limiting case of dis- 
continuous depth a solution does exist with finite 7, implying x-+ 0 as W + 0. Let 
us then re-investigate equation (8.1) on the assumption that 7+r0 > 0. We shall 
calculate both the limiting value of r and the next term in the expansion of 7 
in powers of W .  

- -  

- 

We return to equation (6.2) in the form 

(hg’)’ = [ w2 rs + h) - ; h’] c. 
97, 

(8.10) 

Now for any finite value of W we have h’ -+ 0 as [+ f co. Hence as in $3  we have 

5 - Aexp(WZ,E) or Bexp(WI28, (8.11) 

where A and B are constants and I, and Z, are given by (3.6) and (3.8). Eliminating 
A and B we have the boundary conditions: 

5’- W1,C as [-+-co, 
WZ,c as [-++oo. 

(8.12) 

Suppose then that as W -+ 0 and W [  -+ 2 KI 

c -  1 +  WAC. and that as W+O for fixed [ 
(8.14) 

Substituting from (8.14) into (8.10) and considering only the terms of lowest 

(hag’)’ == -7h’ (8.15) 
order in W we obtain 

and from (8.12) A r  N I, as ~ + - c o ,  

AC’NI, as [++co, 
(8.16) 

where I,, I, and r are the limiting values of these parameters as W + 0. On inte- 

h a [ ’ =  -&+A,  (8.17) 
grating (8.15) we have 

where A is a constant. But from (8.16) 

A = h,(Z,+r) = hz(Zz+7). (8.18) 

Hence r(h2-hl) = Zlhl-Z,h2. (8.19) 

This relation, together with the two relations (3.6) and (3.8)) suffice to determine 
a unique set of finite, limiting values for the three unknowns I,, I ,  and r (see 

7 = (1 - q2)-$, (8.20) 
paper I). In fact r is given by 

where q is a root of the cubic equation 

W q 3 - ( W - + p -  1 = 0 (8.21) 

1 
in which (8.22) 
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(see paper I, appendix). For example, when h,/h, = 2 and e = 1 we find 

r = 4.496,48; 1, = 1.703,26; 1, = - 1.396,62, (8.23) 

and in the special case e = 0 (non-divergent waves) we have, for all ratios h,/h,, 

(8.24) 

in agreement with Rhines (1967). 
Thus we have found a solution which, at  least for finite values of [, tends to 

the solution for discontinuous depth. Various properties of this type of motion 
have been discussed in paper I. To a first approximation we have simply 

(8.25) 

so that the wave profile consists simply of two exponential curves back-to-back. 
In  the next approximation, when [is finite, the wave profile cis given by (8.14), 

where from (8.17) 
(8.26) 

AC = ( - r + A/h) d( + constant. (8.27) s and so 

From these results we can also calculate directly the rate of change of r as the 
width W of the transition zone is increased from zero. For from the differential 
equation (6.2) it is straightforward to derive, as in (4.12), the variational principle 

(8.28) 

The value of T is stationary with respect to arbitrary small perturbations of 5. 
So on multiplying each side by W and differentiating with respect to W we find 

In the integral on the left, we may use for 5 the first approximation (8.25), but 
on the right 

C'/W = A[' = A/h-r (8.30) 

by (8.25). Altogether we obtain 

The integrand on the right-hand side tends to zero when (-+ & 00, and we assume 
that the integral converges. It is remarkable that only the right-hand side of this 
equation depends on the form of the function h(6) in the transition zone. 

5 Fluid Mach. 34 
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this case the right-hand side takes a simpler form. Let us write it first as 
Both the profiles (1 .1)  and (1.2) are anti-symmetrical with respect to 5; and in 

Now the limit of the whole expression is independent of X. Therefore if the inte- 
grals each converge the coefficient of X must vanish. Hence we have simply 

The right-hand side is now easily evaluated (see $09 and 10). With (dT /dW) ,  
given by this expression, we have as W --f 0 

7 - To + (dT /dW) ,  w (8.34) 

9. The depth profile h = 

bottom profile given by equation (1.1), that is to say 

(1 +/3 tanh x/ W )  
We shall now determine the spectrum of trapped waves for the smooth 

h/fL = 1 fptanhc.  (9.1) 

First, let us apply the results of $$7 and 8. 

(i) Asymptotic behaviour as W -+ 03 

P - Z/3(€’ + tanh c), From (7.24) we have 

where € ’ = -  1 +  - - - ( 1 + € ( 1 + / 3 ) ) .  ;( ;I-; 
Writing tanht  = ,LA (9.4) 

we find F - hp(€’+/h), 
F’ N f;p(1-/h2), 

P” - hp(-2p)(l-$).  

Equation (7.19) then reduces to 

(9.5) 

r”g+2€‘po+1 = 0 (9.6) 

r” 0 -  - -€ ’+(d- l )* .  (9.7) 

Also A, = FJF: = - 1/2/~,, (9.8) 

so that po (which is the root less than unity in absolute magnitude) is given by 
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and, after some reduction, 

Hence as W --f co we have 

rnd -- w+ (2v+ 1) (TJ l+PPo !z ( v = 0 , 1 , 2 , 3  ,... ). (9.10) 
1 

2PO 
It will be seen from (9.7) that to is negative, so that the central point of the 
'potential well' lies somewhat to the left of the mid-point of the slope profile, 
as predicted. The eigenfunctions corresponding to (9.10) are given by 

where from (7.10) and (7.14) 
5 N e-+@H,(r) (9.11) 

(9.12) 

For example, when /3 = + and e = l/gh2 = 1 we have 

E' = 7, po  = 42/(3) - 1, eo = - 0-071,920, (9.13) 

and N 6-9641 W + (2v+ 1) x 4.5158. (9.14) 

The asymptotes (9.14) are represented by the dashed curves on the right-hand 
side of figure 5. However, the asymptote corresponding to the lowest mode 
(v = 0 )  is so close to the exact value (found by numerical integration; see below) 
that i t  cannot be distinguished graphically. The reason for this will shortly be- 
come clear. 

(ii) Asymptotic behaviour as W + 0 

On substitution from (9.1) the asymptotic equation (8.5) becomes 

with 

(9.15) 

(9.16) 

In  (9.15), L = px = pwr. (9.17) 

A change of variable to ,u = tanhf[ (9.18) 

reduces the problem to the solution of 

(9.19) 

subject to the condition that dc/d,u be finite as pd-f 5 1. Equation (9.19) is a 
generalization of Legendre's differential equation, to which it reduces when 
p = 0. The solution is then given by 

co = P,(,u), Lo = n(n+l)  (n = 1,2 ,3 ,  ...). (9.20) 

In our application we must have 0 < /3 < 1. The solutions to (9.19) are not known 
functions, but we may expand 6 and L in ascending powers of P as follows: 

I 5= C0+PC1+P2C2++. . .9  

L = Lo+pL,+pL2f ..., 
(9.21) 

5-2  
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where co and L, are given by (9.20). On substituting in (9.19) and using the rela- 

100 \ I  

\ 

n = l  n = l  I 

0.1 I u 
W 

1 
1 / 

/ 

/" 

1 

10 

FIGURE 5. The period of the waves (in pendulum-days) as a function of the width W of 
the transition zone (multiplied by the wave-number m) when the depth profile has the 
form (9.1), with /3 = +, 8 = 1. Full curves represent the computed values. Broken curvos 
represent asymptotes. For the lowest mode the curve cannot be distinguished from its 
asymptotes graphically. 

we easily find Cl, c2, . . . and L,, L,, . . . in succession. The first two terms in the series 
for 5 are found to be: 

(9.23) I n2- 1 n(n + 2 )  
Pn-1- = 4n+2 

( n - 2 ) ( n - 1 ) 2 n ( n + 1 ) P  + n(n + 1) (12 + 212 (n + 3) pnf2* 
" = 4(2n -  1)2 (2n+  1) n-2 4(2n + 1) (2% + 3)2 
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It is easy to show that L is an even function of p, so that the odd coefficients 
L,, L3, . . . all vanish. After some reduction we find 

I 
9(m+ 1) + 9m2(4m - 11) -m(m - 1) (4m- 11) 

(4m + 1)s (4m - 11) 
Lo 32 [ I -  

(9.24) 

where m = n2+n- 1. (9.25) 

From (9.17) and (9.21) we have then 

(9.26) 

These asymptotic expressions are indicated in figure 5 ,  by broken lines. The co- 
efficients of w-l are given in table 1 for n = 1,2,3,4,5. 

n f A 
1 

Profile (1.1) Profile (1.2) 

1 5.79 7-25 
2 17-26 28.83 
3 34.49 64.78 
4 57.46 115.11 
5 86.17 179.83 

TABLE 1. Coefficients of W-l in the asymptotic expressions (9.26) and (10.18), when 
P = t  

As pointed out in 0 8, the case n = 0 must be treated separately. Then T tends 
to a finite value T~ corresponding to a double Kelvin wave. T~ is found in terms of 
the solution to the cubic equation (8.21). The rate of change of r with W is given 
by (8.31). When h is given by (9.1)) the right-hand side of (8.33) reduces to 

P log- 1+P = 2p+pp*+  .... 
1-p" 1-p (9.27) 

In  particular when /3 = 4 the above expression has the value 0.259,930. So from 
8.23) and (8.33) we find 

T~ N 4-496,48 + 6*857,16W. (9.28) 

The first term in (9.28) is indicated by the horizontal line (7 = T ~ )  in figure 5 .  
However, the complete expression (9.28) lies so close to the numerically com- 
puted solution (see below) that it is indistinguishable from it graphically. 

(iii) Numerical solutions 

To evaluate 5 and T over the range of W intermediate between 0 and co a numeri- 
cal integration of (6.2) was carried out. The procedure adopted was as follows. 
The parameter W was given. For some trial value of T the pair of functions 6 and 
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he’ were integrated step by step from some large negative value of g (say c = - 10) 
where 5 is exponential, up to = 0 may be denoted by c- 
and he:. A similar integration was carried out from = + 10 to < = 0, giving 
say c+. and hg;. Then the Wronskian 

= 0. The values at 

(9.29) 

was calculated. By repeating the process, Z was found as a function of r.  As 
expected, 2 was an oscillatory function of r .  The roots of 2 = 0, found by inter- 
polation and successive approximation, gave the eigenvalues of the equation. 

The values of r computed in this way? are shown in figure 5 (full lines) plotted 
against the width W of the transition zone, in the case P = Q, E = 1. It can be seen 
that the asymptotic behaviour of r is verified at  both large and small values of 
W .  Thus r tends to infinity at both ends of the range for all the modes except the 
lowest. For this last mode r tends to a finite value as W 3 0, the value correspond- 
ing to a double Kelvin wave. 

The corresponding eigenfunctions when W = 8, 1 and 6 are shown in figures 
S(u) ,  (b)  and ( c )  respectively. The functions have been normalized so that the 
integral of c2 over ( - co < 2 < co) is equal to unity. The tendency for the lowest 
mode (n = 0) to be shifted towards the upper part of the transition zone can be 
seen in all three cases. In  the higher modes this tendency is less apparent. 

The reason for the near coincidence of the period of the lowest mode (n = 0) 
with the two asymptotes as W-tO and W-tco may be worth investigating. 
Both asymptotes (9.14) and (9.28) represent straight lines (on a linear scale of 
W versus r),  and for the lowest mode (Y = 0) both the gradient of the lines and 
their intercepts on the r-axis are close together. The exact curve appears to lie 
between the two asymptotes. 

Now for small values of P it  is easy to show that the asymptote (8.34) reduces to 

and the asymptote (9.10) reduces to 

as W-tco. 

(9.30) 

(9.31) 

(The proof of these results is left as an exercise to the reader.) For the lowest 
mode, the two above expressions are identical. The near coincidence of the 
asymptotes then appears as a result of the rather small value of /3, = &, that we 
have selected. 

In  other words, the asymptotes will coincide if the contrast in depth between 
h, and h, is sufficiently small. 

This, however, is a special property of the particular profile (9.1)) as is evident 
from the fact that the asymptote for W --f GO generally depends on the differential 
properties of the depth profile at  the point (8  7, equation (7.23)) whereas 

?The curves are based on the values of 7 computed at the points W = +, 1/4J2, 
+, ljSJ2, . . ., 8. 

= 
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t 1.0 f l  

l l l I I I I * x  

FIGURE 6. Eigenfunctions corresponding t o  the depth profile (1.1) when /l = Q and e = 1. 
(a )  w = 8, ( b )  w = 1, ( c )  w = Q. 

c 
I A i 

FIGURE 6. Eigenfunctions corresponding t o  the depth profile (1.1) when /l = Q and e = 1. 
(a )  w = 8, ( b )  w = 1, ( c )  w = Q. 
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the asymptote for W + O  depends on an integral property of the depth ( Q  8, 
equation (8.31)). A counter-example of a depth profile where the asymptotes 
do not coincide for small depth contrast will be given in the following section. 

10. The ‘uniform slope’ profile 

slope ’ profile : 
For the sake of comparison a similar study was carried out for the ‘uniform 

(10.1) 
1 - p  (-co < [ < -1))  

h/E= 1+p[ ( - 1  < c <  1)) i 1 + p  (1 <[<oo). 

The corresponding analytical results are as follows : 

(i)  Asymptotic behaviour as W -+ co 
When - 1 < [ < 1 we have now 

P = I$(€’+() (10.2) 

where d is given by (9.3). Thus 

G(5,A)  = F-AP’ = L p ( d + [ - A ) .  (10.3) 

Clearly t o =  -1 ,  A, = €’- 1 (10.4) 

and h, = z(1 -p), yo = @(E’- 1)) Pi+ = @?, Pi+ = 0. (10.5) 

So the asymptotic form of < from (7.29) is given by 

with 
1 - p  4 

7 N  ( d - 1 ) W -  ( __ p ) r l v m  

(10.6) 

(10.7) 

where qy denotes the vth zero of Ai(7).  For example, when /3 = + and e = 1 we 

r N 6 W -  467, W;. (10.8) 
have 

These asymptotes are indicated by the broken lines on the right of figure 7. The 
asymptote for the lowest mode (v = 0) is close to, but distinguishable from, the 
accurately calculated curve. 

(ii) Asymptotic behaviour as W + 0 

For the higher modes we have, from (8.5), to  solve 

with boundary conditions 
d</d[ = 0 when 6 = & 1. 

The change of variable P = 2(1 + P t P  

(10.9) 

(10.10) 

(10.11) 
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reduces equation (10.9) to Bessel’s equation 

with boundary conditions 

d@lp = 0 when p = 2(1 P)$. 
5 = A J,[p(X/p)*] + BY,[p(X/P)*]. The solution is then 

(10.12) 

(10.13) 

(10.14) 

hz/h ,=2 ,  E = l  
Depth profile (10.1) 

10 

W 

FIGURE 7. The wave period as a function of the width W of the transition zone for the 
‘uniformslope’ profile (10. l) ,  with /3 = +, E = 1. Full curves represent the computed values, 
broken curves the asymptotes. 

Since JA = - J1 the boundary conditions give 

AJ,(a) +BY,(a) = 0, a = 2[X(p-l- l)]S, 

AJl(b) + BY,(b) = 0, 

Hence U(a,  b )  J1(.) Yl(b) - J1(b)Yl(a) = 0 

b = 2[X(P-’+ 1)14. 

and 

(10.15) 

( 1 0.1 6) 

(10.17) 
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5 

1 
I 

X 

5 

FIGURE 8. Eigenfunctions corresponding to the ‘uniform slope’ (1.2) when p = -5 and 
E = 1. (a)  W = 8, ( b )  W = 1, ( c )  W = Q. 
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The curves in the (a, b)-plane corresponding to U = 0 are shown in figure 9. 
They are easily plotted, for if z, denotes the sth zero of Jl(z), then the 8th curve 
passes through the points (a, b) = (zs, z,+,) indicated by solid circles. Similarly 
with the zeros of Yl(z) (indicated by empty circles). Moreover, zeros of U(a, b )  
for given ratios a/b have been tabulated 
Fox (1950) and Olver (1964). To find the 

by various authors, for example, by 
values of (a, b) for a given value of P 

6 

FIGURE 9. Diagram for the solution of the equation U(a, 6) J,(a) Yl(6) -J,(b) Yl(a) = 0. 
Full curves represent the zero-contours of U .  Full circles indicate points with co-ordinates 
(z,, z,+,) where z, is a zero of J,(z). Open circles indicate points (z:, z:+J where 2,: is a zero of 
Yl(4.  

we may take the intersections of the straight line (10.17) with the curves of figure 
9. Each intersection gives a pair (an, bn), say. Then from (10.15) we have 

(10.18) 

For example, in the case P = Q we find the values of X shown in the last column 
of table 1. These may be compared with the corresponding values for the profile 
(9.1), which are shown in column 2 of the same table. It will be seen that for the 
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higher modes the wave periods for the bottom profile (10.1) are almost twice as 
great as those for the profile (9.1). However, for the lowest mode (n = 0) both 
a, and b, vanish, and r tends to the same finite value which corresponds to the 
double Kelvin wave. The expression on the right of (8.33) reduces to 

(10.19) 

The first term of the asymptote (8.34), namely r - r,,, is indicated by the broken 
horizontal line in figure 7. (This is the same as in figure 5.) The complete expression 
in (8.34) is indicated by the lowest broken curve to  the left of figure 7. This again 
is close to, but easily distinguishable from, the accurately computed curve. We 
may note that for small values of /3 the asymptote (8.34) reduces to 

while (10.7) reduces to 

l + E ~ - s ~ +  as w+co. '"7 P+ 

(10.20) 

(10.21) 

These are clearly not the same (cf. $9). 
The accurately computed periods for the normal modes are shown by the full 

curves in figure 7 ,  and the corresponding eigenfunctions are shown in figure 8 
for W = 8 , l  and Q. These figures may be compared to figures 5 and 6 respectively. 
The behaviour of the modes in figure 8 is similar to that in figure 6. In  figure 8 
there is a similar tendency for the energy to be shifted towards the left, that is to 
say the upper part of the slope. The tendency is most pronounced in the lowest 
mode in figure 8a. 

11. The dispersion relation 
In  $57-10 we have discussed the behaviour of the wave period r, and hence 

the frequency a = - 1/r, for a fixed wave-length in the y-direction and varying 
horizontal scales in the x-direction. Of equal importance, however, is the de- 
pendence of the frequency a on the wave-number m in the y-direction, when the 
bottom profile is kept constant. The derivative daldm gives in fact the group- 
velocity of the waves. 

It might at first be thought that the bottom profile would appear to a longer 
wave as a very steep slope, that is to say that limiting behaviour as m+O or 
m+co would be similar to the behaviour as W+O or W+co respectively. 
Although this is true in the non-divergent approximation, there are, as we shall 
see, important differences between the limiting cases as m + co and W + co, due 
to the divergence of the wave motion. 

When the wave-number m is retained in the differential equation (2.6), but f 
is set equal to unity, we obtain 

(11.1) 
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Consider first the limit as m-t 03. Setting 

7/m = A =: O(1) (11.2) 

we see that (11.1) can be written 

(hc)’ = m2(B - hF’)c, 

where 
A2m2 - 1 
gA2m4 

P = h+- = h+O(m-2). 

(11.3) 

(11.4) 

Comparing this with (7.1) and (7.2) we see that the situations are similar except 
that W is replaced by m, and F N h+ ( l /g)  is replaced by P N h. So in this 
limiting case the divergence may be neglected. The asymptotic formulae for 5 
and 7 may be written down directly from 0 7. For example, from (7.23) we have 
in the case of the smooth profile 

(11.5) 

where h, is the solution of 

In  the case when h is continuous but h’ discontinuous we have 

(log h,)” = 0. (11.6) 

(11.7) 

where rv is a zero of the Airy function and h, is the depth a t  the discontinuity. 
Conside; on the other hand the limit m -t 0. On writing equation (1 1.1) as 

X2-m2 - 
(he‘)’ = (m2h +_I_ - Ah’) 5, 

9 x 2  
(11.8) 

where X = m7 = 0(1) ,  (11.9) 

we see that as m -+ 0 the limiting form of this equation is now 

(he’)’ = (1 - Xhr) 5 
9 

( 11.10) 

with boundary conditions that c + O  as x+ f 03. A discrete set of eigenvalues 
h = X,, where n = 0,1 ,2 ,  . . . will, in general, exist, as that as m --f 0,  
- 

B N -mlX,. (11.11) 

But in contrast to (8.5), equation (11.10) has no eigenvalue x = 0. Since the co- 
efficient of 5 must be negative over a t  Ieast some range of x we must have 

(1 1.12) 

So there exists no mode whose period and frequencies tend to finite non-zero 
limits as m --f 0. 

The difference between this situation and the limit as W --f 0 is connected with 
the presence of the term l /g  on the right of (11.10); which again is associated 
with the divergence of the wave motion. Since m occurs in the denominator of the 
parameter E (see (4.21)) the divergence is of course most pronounced at small 
values of m, corresponding to large wavelengths. 
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FIGURE 10. Dispersion relation showing the frequency ulf as a function of mW when 
h,/h, = 2 (p = )) and the convergence parameter m = 1. 
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A consequence of (1 1.11) and (1 1.12) is that for large wavelengths the phase 
velocity tends to a finite limiting value: 

c = - a/m+ 1/X, < ,f(gh’)max (1 1.13) 

(the formula has been made dimensional by inserting the Coriolis frequency f .) 
At small wavelengths (large m) equations (11.5) and (11.7) show that the phase 
velocity c tends to zero. 

From (1 1.13) it follows also that the group velocity at large wavelengths is in 
the same direction, and in fact is equal to the phase velocity; while from (11.5) 
and (11.7) the group velocity is in the opposite direction to the phase velocity. 
Thus if the group velocity is continuous it must vanish somewhere in the inter- 
val 0 < m < co. 

The dispersion relation for the smooth profile (9.1) was computed for two 
values of the parameter 

W E p -  Wf2 w”f” 
(gh‘)max Pgh ’ 

(1 1.14) 

namely w = 1 (figure 10) and w = 0 (figure 11). As before, /3 = 9. The scale is 
now linear in a and m. The marked difference in the behaviour of the lowest 
mode can be seen, especially on the left of the diagram. The effect on the higher 
modes is less pronounced. In  general, the effect of taking the divergence into ac- 
count is to shift the maximum value of each curve towards the right. In  other 
words the wave-number associated with vanishing group-velocity tends to be 
increased. 

12. Discussion 
We have investigated in detail only two special forms of the depth profile 

h(x).  But from the asymptotic formulae given in $0 7,8and 11 it should be possible 
to construct by elementary means a rough approximation to the wave period T 
as a function of m for any given form of h or value of w. It appears likely that, at 
least for small values of W ,  the form of the lowest mode is insensitive to the details 
of the bottom topography, and differs little from a double Kelvin wave. The 
higher modes, to judge by their wave periods, are more sensitive to the bottom 
topography, and so might be more easily scattered by irregularities in the bottom 
profile. 

In  the present treatment we have made various simplifying assumptions, in 
particular that the depth profile is monotonic, and that the gradient is reasonably 
smooth. If the profile is monotonic but not smooth, then the function Q in (3.14), 
which depends on the derivative of h with respect to x, will be spiky. Under such 
circumstances we expect that those modes whose scale in the x-direction is 
large compared to the horizontal scale of the bottom roughnesses will not be 
much affected, but that those whose scale is comparable with, or small compared 
to the roughnesses will be quite different. 

If h(x)  is not even monotonic then the way is open for modes which travel in 
the opposite direction to Kelvin waves, that is, modes having r < 0. Trapped 
waves with period less than a pendulum-day also become possible. Among 
these may be included waves which are refracted towards the shallower part of 



80 M .  8. Longuet-Higgins 

the transition zone by the ordinary process of wave refraction (see, for example, 
Eckart 1951; Longuet-Higgins 1967). 

It would be interesting to observe the pattern of currents near some prominent 
feature in the ocean such as the Mendocino escarpment in the Pacific, to see if 
oscillations corresponding to double Kelvin waves do in fact exist. For reasons 
given in paper I, one might expect to find a high density of energy in the neigh- 
bourhood of the cut-off period, corresponding to high wave-numbers and zero 

h,+hl 
h, - hl 

divergence. This is given by 
7 =  - .__ (12.1) 

in units of a pendulum-day. To detect such oscillations by harmonic analysis it 
would be desirable to make continuous observations over a period of at  least 
several weeks. 

The present investigation was begun at the National Institute of Ocean- 
ography, England in the summer of 1967. The computations reported in $58 
and 9 were for the most part carried out on the Atlas computer at  London Uni- 
versity with the assistance of Mr H. Griffiths, of N.I.O. They were completed by 
the author on the CDC 3300 at Corvallis. The work at  Corvallis has been supported 
under ONR Contract 30-4544. The author would like to acknowledge the 
stimulus of conversations with Dr K. Hasselmann on a visit to Hamburg Uni- 
versity and of correspondence with Dr V. T. Buchwald at  the University of 
Sydney. 
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